Lysine-Less Variants of Spinal Muscular Atrophy SMN and SMNΔ7 Proteins Are Degraded by the Proteasome Pathway

نویسندگان

  • Raúl Sánchez-Lanzas
  • José G Castaño
چکیده

Spinal muscular atrophy is due to mutations affecting the SMN1 gene coding for the full-length protein (survival motor neuron; SMN) and the SMN2 gene that preferentially generates an exon 7-deleted protein (SMNΔ7) by alternative splicing. To study SMN and SMNΔ7 degradation in the cell, we have used tagged versions at the N- (Flag) or C-terminus (V5) of both proteins. Transfection of those constructs into HeLa cells and treatment with cycloheximide showed that those protein constructs were degraded. Proteasomal degradation usually requires prior lysine ubiquitylation. Surprisingly, lysine-less variants of both proteins tagged either at N- (Flag) or C-terminus (V5) were also degraded. The degradation of the endogenous SMN protein, and the protein constructs mentioned above, was mediated by the proteasome, as it was blocked by lactacystin, a specific and irreversible proteasomal inhibitor. The results obtained allowed us to conclude that SMN and SMNΔ7 proteasomal degradation did not absolutely require internal ubiquitylation nor N-terminal ubiquitylation (prevented by N-terminal tagging). While the above conclusions are firmly supported by the experimental data presented, we discuss and justify the need of deep proteomic techniques for the study of SMN complex components (orphan and bound) turn-over to understand the physiological relevant mechanisms of degradation of SMN and SMNΔ7 in the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ubiquitin-specific protease 9x deubiquitinates and stabilizes the spinal muscular atrophy protein-survival motor neuron.

Spinal muscular atrophy (SMA), the leading genetic disorder of infant mortality, is caused by low levels of survival motor neuron (SMN) protein. Currently it is not clear how the SMN protein levels are regulated at the post-transcriptional level. In this report, we find that Usp9x, a deubiquitinating enzyme, stably associates with the SMN complex via directly interacting with SMN. Usp9x deubiqu...

متن کامل

The E3 ubiquitin ligase mind bomb 1 ubiquitinates and promotes the degradation of survival of motor neuron protein

Spinal muscular atrophy is an inherited motor neuron disease that results from a deficiency of the survival of motor neuron (SMN) protein. SMN is ubiquitinated and degraded through the ubiquitin proteasome system (UPS). We have previously shown that proteasome inhibition increases SMN protein levels, improves motor function, and reduces spinal cord, muscle, and neuromuscular junction pathology ...

متن کامل

The SMN structure reveals its crucial role in snRNP assembly

The spliceosome plays a fundamental role in RNA metabolism by facilitating pre-RNA splicing. To understand how this essential complex is formed, we have used protein crystallography to determine the first complete structures of the key assembler protein, SMN, and the truncated isoform, SMNΔ7, which is found in patients with the disease spinal muscular atrophy (SMA). Comparison of the structures...

متن کامل

Retraction notice: the SMN structure reveals its crucial role in snRNP assembly.

The spliceosome plays a fundamental role in RNA metabolism by facilitating pre-RNA splicing. To understand how this essential complex is formed, we have used protein crystallography to determine the first complete structures of the key assembler protein, SMN, and the truncated isoform, SMNΔ7, which is found in patients with the disease spinal muscular atrophy (SMA). Comparison of the structures...

متن کامل

Development and characterization of an SMN2-based intermediate mouse model of Spinal Muscular Atrophy.

Spinal Muscular Atrophy (SMA) is due to the loss of the survival motor neuron gene 1 (SMN1), resulting in motor neuron (MN) degeneration, muscle atrophy and loss of motor function. While SMN2 encodes a protein identical to SMN1, a single nucleotide difference in exon 7 causes most of the SMN2-derived transcripts to be alternatively spliced resulting in a truncated and unstable protein (SMNΔ7). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017